Massively parallel motion planning algorithms under uncertainty using POMDP

نویسندگان

  • Taekhee Lee
  • Young J. Kim
چکیده

We present new parallel algorithms that solve continuous-state partially observable Markov decision process (POMDP) problems using the GPU (gPOMDP) and a hybrid of the GPU and CPU (hPOMDP). We choose the Monte Carlo value iteration (MCVI) method as our base algorithm and parallelize this algorithm using the multi-level parallel formulation of MCVI. For each parallel level, we propose efficient algorithms to utilize the massive data parallelism available on modern GPUs. Our GPU-based method uses the two workload distribution techniques, compute/data interleaving and workload balancing, in order to obtain the maximum parallel performance at the highest level. Here we also present a CPU–GPU hybrid method that takes advantage of both CPU and GPU parallelism in order to solve highly complex POMDP planning problems. The CPU is responsible for data preparation, while the GPU performs Monte Cacrlo simulations; these operations are performed concurrently using the compute/data overlap technique between the CPU and GPU. To the best of the authors’ knowledge, our algorithms are the first parallel algorithms that efficiently execute POMDP in a massively parallel fashion utilizing the GPU or a hybrid of the GPU and CPU. Our algorithms outperform the existing CPU-based algorithm by a factor of 75–99 based on the chosen benchmark.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A POMDP Approach to Robot Motion Planning under Uncertainty

Motion planning in uncertain and dynamic environments is critical for reliable operation of autonomous robots. Partially observable Markov decision processes (POMDPs) provide a principled general framework for such planning tasks and have been successfully applied to several moderately complex robotic tasks, including navigation, manipulation, and target tracking. The challenge now is to scale ...

متن کامل

An Online POMDP Solver for Uncertainty Planning in Dynamic Environment

Motion planning under uncertainty is important for reliable robot operations in uncertain and dynamic environments. Partially Observable Markov Decision Process (POMDP) is a general and systematic framework for motion planning under uncertainty. To cope with dynamic environment well, we often need to modify the POMDP model during runtime. However, despite recent tremendous advances in POMDP pla...

متن کامل

Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models

Motion planning under uncertainty that can efficiently take into account changes in the environment is critical for robots to operate reliably in our living spaces. Partially Observable Markov Decision Process (POMDP) provides a systematic and general framework for motion planning under uncertainty. Point-based POMDP has advanced POMDP planning tremendously over the past few years, enabling POM...

متن کامل

Monte Carlo Value Iteration for Continuous-State POMDPs

Partially observable Markov decision processes (POMDPs) have been successfully applied to various robot motion planning tasks under uncertainty. However, most existing POMDP algorithms assume a discrete state space, while the natural state space of a robot is often continuous. This paper presents Monte Carlo Value Iteration (MCVI) for continuous-state POMDPs. MCVI samples both a robot’s state s...

متن کامل

Motion Planning under Uncertainty for Robotic Tasks with Long Time Horizons

Motion planning with imperfect state information is a crucial capability for autonomous robots to operate reliably in uncertain and dynamic environments. Partially observable Markov decision processes (POMDPs) provide a principled general framework for planning under uncertainty. Using probabilistic sampling, point-based POMDP solvers have drastically improved the speed of POMDP planning, enabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016