Massively parallel motion planning algorithms under uncertainty using POMDP
نویسندگان
چکیده
We present new parallel algorithms that solve continuous-state partially observable Markov decision process (POMDP) problems using the GPU (gPOMDP) and a hybrid of the GPU and CPU (hPOMDP). We choose the Monte Carlo value iteration (MCVI) method as our base algorithm and parallelize this algorithm using the multi-level parallel formulation of MCVI. For each parallel level, we propose efficient algorithms to utilize the massive data parallelism available on modern GPUs. Our GPU-based method uses the two workload distribution techniques, compute/data interleaving and workload balancing, in order to obtain the maximum parallel performance at the highest level. Here we also present a CPU–GPU hybrid method that takes advantage of both CPU and GPU parallelism in order to solve highly complex POMDP planning problems. The CPU is responsible for data preparation, while the GPU performs Monte Cacrlo simulations; these operations are performed concurrently using the compute/data overlap technique between the CPU and GPU. To the best of the authors’ knowledge, our algorithms are the first parallel algorithms that efficiently execute POMDP in a massively parallel fashion utilizing the GPU or a hybrid of the GPU and CPU. Our algorithms outperform the existing CPU-based algorithm by a factor of 75–99 based on the chosen benchmark.
منابع مشابه
A POMDP Approach to Robot Motion Planning under Uncertainty
Motion planning in uncertain and dynamic environments is critical for reliable operation of autonomous robots. Partially observable Markov decision processes (POMDPs) provide a principled general framework for such planning tasks and have been successfully applied to several moderately complex robotic tasks, including navigation, manipulation, and target tracking. The challenge now is to scale ...
متن کاملAn Online POMDP Solver for Uncertainty Planning in Dynamic Environment
Motion planning under uncertainty is important for reliable robot operations in uncertain and dynamic environments. Partially Observable Markov Decision Process (POMDP) is a general and systematic framework for motion planning under uncertainty. To cope with dynamic environment well, we often need to modify the POMDP model during runtime. However, despite recent tremendous advances in POMDP pla...
متن کاملPoint-Based Policy Transformation: Adapting Policy to Changing POMDP Models
Motion planning under uncertainty that can efficiently take into account changes in the environment is critical for robots to operate reliably in our living spaces. Partially Observable Markov Decision Process (POMDP) provides a systematic and general framework for motion planning under uncertainty. Point-based POMDP has advanced POMDP planning tremendously over the past few years, enabling POM...
متن کاملMonte Carlo Value Iteration for Continuous-State POMDPs
Partially observable Markov decision processes (POMDPs) have been successfully applied to various robot motion planning tasks under uncertainty. However, most existing POMDP algorithms assume a discrete state space, while the natural state space of a robot is often continuous. This paper presents Monte Carlo Value Iteration (MCVI) for continuous-state POMDPs. MCVI samples both a robot’s state s...
متن کاملMotion Planning under Uncertainty for Robotic Tasks with Long Time Horizons
Motion planning with imperfect state information is a crucial capability for autonomous robots to operate reliably in uncertain and dynamic environments. Partially observable Markov decision processes (POMDPs) provide a principled general framework for planning under uncertainty. Using probabilistic sampling, point-based POMDP solvers have drastically improved the speed of POMDP planning, enabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 35 شماره
صفحات -
تاریخ انتشار 2016